Predict methods for objects with class attribute tvlm, tvar, tvvar, tvirf, tvsure and tvplm. This function needs new values of variables y (response), x (regressors), exogen (exogenous variables, when used), and z (smoothing variable).

# S3 method for tvlm
predict(object, newdata, newz, ...)

# S3 method for tvar
predict(object, newdata, newz, newexogen = NULL, ...)

# S3 method for tvvar
predict(object, newdata, newz, newexogen = NULL, ...)

# S3 method for tvsure
predict(object, newdata, newz, ...)

# S3 method for tvplm
predict(object, newdata, newz, ...)

Arguments

object

An object used to select a method.

newdata

A pdata.frame with new values of all regressors, with the same name and order as they appear in argument 'data' from the 'tvplm' object

newz

A vector with new values of the smoothing variable.

...

Other arguments passed to specific methods.

newexogen

A matrix or vector with the new value of the exogenous variables. Only for predictions of 'tvar' and 'tvvar' objects.

Value

An object of class matrix or vector with the prediction.

See also

Examples

## Example of TVLM prediction with coefficients as ## functions of the realized quarticity data("RV") RV2 <- head(RV, 2001) z <- RV2$RQ_lag_sqrt TVHARQ <- tvLM (RV ~ RV_lag + RV_week + RV_month, z = z, data = RV2, bw = 0.0062) newdata <- cbind(RV$RV_lag[2002:2004], RV$RV_week[2002:2004], RV$RV_month[2002:2004]) newz <- RV$RQ_lag_sqrt[2002:2004] predict(TVHARQ, newdata, newz)
#> [1] 1.781073e-05 1.926774e-05 2.705291e-05
## Example of TVAR prediction with coefficients as ## functions of the realized quarticity data("RV") RV2 <- head(RV, 2001) exogen = RV2[, c("RV_week", "RV_month")] TVHARQ2 <- tvAR (RV2$RV, p = 1, exogen = exogen, z = RV2[, "RQ_lag_sqrt"], bw = 0.0062) newylag <- RV$RV[2002:2004] newz <- RV$RQ_lag_sqrt[2002:2004] newexogen <- RV[2002:2004, c("RV_week", "RV_month")] predict(TVHARQ2, newylag, newz, newexogen = newexogen)
#> [1] 1.930648e-05 2.597139e-05 2.642790e-05
## Example of TVVAR prediction with coefficients as ## functions of a random ARMA (2,2) process data(usmacro, package = "bvarsv") smoothing <- arima.sim(n = NROW(usmacro) + 3, list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)), sd = sqrt(0.1796)) smoothing <- as.numeric(smoothing) TVVAR.z <- tvVAR(usmacro, p = 6, type = "const", z = smoothing[1:NROW(usmacro)], bw = c(16.3, 16.3, 16.3)) newdata <- data.frame(inf = c(2, 1, 6), une = c(5, 4, 9), tbi = c(1, 2.5, 3)) newz <- c(0, 1.2, -0.2) predict(TVVAR.z, newdata = newdata, newz = newz)
#> inf une tbi #> [1,] 0.3544131 0.3544131 0.3544131 #> [2,] 4.5063953 4.5063953 4.5063953 #> [3,] -2.1858620 -2.1858620 -2.1858620
## Example of TVSURE prediction with coefficients as ## functions of an ARMA(2,2) process data("Kmenta", package = "systemfit") nobs <- NROW (Kmenta) eqDemand <- consump ~ price + income eqSupply <- consump ~ price + farmPrice system <- list(demand = eqDemand, supply = eqSupply) smoothing <- arima.sim(n = nobs + 3, list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)), sd = sqrt(0.1796)) smoothing <- as.numeric(smoothing) TVOLS.z <- tvSURE(system, data = Kmenta, z = smoothing[1:nobs], bw = c(7, 1.8), est = "ll") newdata <- data.frame(consump = c(95, 100, 102), price = c(90, 100, 103), farmPrice = c(70, 95, 103), income = c(82, 94, 115)) newz <- tail(smoothing, 3) predict(TVOLS.z, newdata = newdata, newz = newz)
#> demand supply #> [1,] 99.11459 94.20937 #> [2,] 99.16312 99.40177 #> [3,] 103.60595 100.81371
data(OECD) z <- runif(length(levels(OECD$year)), 10, 15) TVPOLS <- tvPLM(lhe~lgdp+pop65+pop14+public, z = z, index = c("country", "year"), data = OECD, method ="pooling", bw = 2) newdata <- cbind(lgdp = c(10, 13), pop65 = c(9, 12), pop14 = c(17, 30), public = c(13, 20)) newz <- runif(2, 10, 15) predict(TVPOLS, newdata = newdata, newz = newz)
#> [1] 7.447127 9.582447